
D02 – Ordinary Differential Equations

D02GAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02GAF solves the two-point boundary-value problem with assigned boundary values for a system of
ordinary differential equations, using a deferred correction technique and a Newton iteration.

2 Specification

SUBROUTINE D02GAF(U, V, N, A, B, TOL, FCN, MNP, X, Y, NP, W, LW,
1 IW, LIW, IFAIL)
INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
real U(N,2), V(N,2), A, B, TOL, X(MNP), Y(N,MNP),
1 W(LW)
EXTERNAL FCN

3 Description

D02GAF solves a two-point boundary-value problem for a system of n differential equations in the interval
[a, b]. The system is written in the form

y′
i = fi(x, y1, y2, . . . , yn) , i = 1, 2, . . . , n (1)

and the derivatives are evaluated by a subroutine FCN supplied by the user. Initially, n boundary
values of the variables yi must be specified (assigned), some at a and some at b. The user also supplies
estimates of the remaining n boundary values and all the boundary values are used in constructing
an initial approximation to the solution. This approximate solution is corrected by a finite-difference
technique with deferred correction allied with a Newton iteration to solve the finite-difference equations.
The technique used is described fully in Pereyra [1]. The Newton iteration requires a Jacobian matrix
∂fi

∂yj
and this is calculated by numerical differentiation using an algorithm described in Curtis et al. [2].

The user supplies an absolute error tolerance and may also supply an initial mesh for the construction of
the finite-difference equations (alternatively a default mesh is used). The algorithm constructs a solution
on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is
everywhere less than the user’s tolerance and so that the error is approximately equidistributed on the
final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If on
the other hand the solution is required at several specific points then the user should use the interpolation
routines provided in the E01 Chapter Introduction if these points do not themselves form a convenient
mesh.

4 References

[1] Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential
Equations. Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman
and P Nelson) 76 Springer-Verlag

[2] Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J.
Inst. Maths. Applics. 13 117–119

[NP3390/19/pdf] D02GAF.1

D02GAF D02 – Ordinary Differential Equations

5 Parameters

1: U(N,2) — real array Input

On entry: U(i, 1) must be set to the known (assigned) or estimated values of yi at a and U(i, 2)
must be set to the known or estimated values of yi at b, for i = 1, 2, . . . , n.

2: V(N,2) — real array Input

On entry: V(i, j) must be set to 0.0 if U(i, j) is a known (assigned) value and to 1.0 if U(i, j) is an
estimated value, i = 1, 2, . . . , n; j = 1, 2.

Constraint: precisely N of the V(i, j) must be set to 0.0, i.e., precisely N of the U(i, j) must be
known values, and these must not be all at a or all at b.

3: N — INTEGER Input

On entry: the number of equations.

Constraint: N ≥ 2.

4: A — real Input

On entry: the left-hand boundary point, a.

5: B — real Input

On entry: the right-hand boundary point, b.

Constraint: B > A.

6: TOL — real Input

On entry: a positive absolute error tolerance. If

a = x1 < x2 < . . . < xNP = b

is the final mesh, zj(xi) is the jth component of the approximate solution at xi, and yj(x) is the jth
component of the true solution of equation (1) (see Section 3) and the boundary conditions, then,
except in extreme cases, it is expected that

|zj(xi)− yj(xi)| ≤ TOL, i = 1, 2, . . . ,NP; j = 1, 2, . . . , n. (2)

Constraint: TOL > 0.0.

7: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y′
i) at the general point x.

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, Y(n), F(n)

where n is the actual value of N in the call of D02GAF.

1: X — real Input
On entry: the value of the argument x.

2: Y(n) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

3: F(n) — real array Output
On exit: the values of fi, for i = 1, 2, . . . , n.

FCN must be declared as EXTERNAL in the (sub)program from which D02GAF is called.
Parameters denoted as Input must not be changed by this procedure.

D02GAF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02GAF

8: MNP — INTEGER Input

On entry: the maximum permitted number of mesh points.

Constraint: MNP ≥ 32.

9: X(MNP) — real array Input/Output

On entry: if NP ≥ 4 (see NP below), the first NP elements must define an initial mesh. Otherwise
the elements of X need not be set.

Constraint:
A = X(1) < X(2) < . . . < X(NP) = B for NP ≥ 4 (3)

On exit: X(1),X(2),...,X(NP) define the final mesh (with the returned value of NP) satisfying the
relation (3).

10: Y(N,MNP) — real array Output

On exit: the approximate solution zj(xi) satisfying (2), on the final mesh, that is

Y(j, i) = zj(xi) , i = 1, 2, . . . ,NP; j = 1, 2, . . . , n,

where NP is the number of points in the final mesh.

The remaining columns of Y are not used.

11: NP — INTEGER Input/Output

On entry: determines whether a default or user-supplied mesh is used. If NP = 0, a default value
of 4 for NP and a corresponding equispaced mesh X(1),X(2),...,X(NP) are used. If NP ≥ 4, then
the user must define an initial mesh using the array X as described.

Constraint: NP = 0 or 4 ≤ NP ≤ MNP.

On exit: the number of points in the final (returned) mesh.

12: W(LW) — real array Workspace
13: LW — INTEGER Input

On entry: the length of the array W as declared in the calling (sub)program.

Constraint: LW ≥MNP × (3N2 + 6N+ 2) + 4N2 + 4N

14: IW(LIW) — INTEGER array Workspace
15: LIW — INTEGER Input

On entry: the length of the array IW as declared in the calling (sub)program.

Constraint: LIW ≥ MNP× (2N + 1) + N2 + 4N+ 2.

16: IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
c = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

[NP3390/19/pdf] D02GAF.3

D02GAF D02 – Ordinary Differential Equations

6 Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

IFAIL = 1

One or more of the parameters N, TOL, NP, MNP, LW or LIW has been incorrectly set, or B ≤ A,
or the condition (3) on X is not satisfied, or the number of known boundary values (specified by
V) is not N.

IFAIL = 2

The Newton iteration has failed to converge. This could be due to there being too few points in
the initial mesh or to the initial approximate solution being too inaccurate. If this latter reason
is suspected the user should use subroutine D02RAF instead. If the warning ‘Jacobian matrix is
singular’ is printed this could be due to specifying zero estimated boundary values and these should
be varied. This warning could also be printed in the unlikely event of the Jacobian matrix being
calculated inaccurately. If the user cannot make changes to prevent the warning then subroutine
D02RAF should be used.

IFAIL = 3

The Newton iteration has reached round-off level. It could be, however, that the answer returned
is satisfactory. This error might occur if too much accuracy is requested.

IFAIL = 4

A finer mesh is required for the accuracy requested; that is MNP is not large enough.

IFAIL = 5

A serious error has occurred in a call to D02GAF. Check all array subscripts and subroutine
parameter lists in calls to D02GAF. Seek expert help.

7 Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the relation
(2) except in extreme circumstances. If too many points are specified in the initial mesh, the solution
may be more accurate than requested and the error may not be approximately equidistributed.

8 Further Comments

The time taken by the routine depends on the difficulty of the problem, the number of mesh points used
(and the number of different meshes used), the number of Newton iterations and the number of deferred
corrections.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. The user may select the channel numbers
on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 9 for an example. Otherwise the default channel numbers will be used, as
specified in the implementation document.

A common cause of convergence problems in the Newton iteration is the user specifying too few points
in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is unable to do
so until the solution on the initial mesh has been calculated in the Newton iteration.

If the user specifies zero known and estimated boundary values, the routine constructs a zero initial
approximation and in many cases the Jacobian is singular when evaluated for this approximation, leading
to the breakdown of the Newton iteration.

The user may be unable to provide a sufficiently good choice of initial mesh and estimated boundary
values, and hence the Newton iteration may never converge. In this case the continuation facility provided
in D02RAF is recommended.

D02GAF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02GAF

In the case where the user wishes to solve a sequence of similar problems, the final mesh from solving
one case is strongly recommended as the initial mesh for the next.

9 Example

We solve the differential equation
y′′′ = −yy′′ − β(1 − y′2)

with boundary conditions
y(0) = y′(0) = 0,

y′(10) = 1

for β = 0.0 and β = 0.2 to an accuracy specified by TOL = 1.0E−3. We solve first the simpler problem
with β = 0.0 using an equispaced mesh of 26 points and then we solve the problem with β = 0.2 using
the final mesh from the first problem.

Note the call to X04ABF prior to the call to D02GAF.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02GAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, MNP, LW, LIW
PARAMETER (N=3,MNP=40,LW=MNP*(3*N*N+6*N+2)+4*N*N+4*N,

+ LIW=MNP*(2*N+1)+N*N+4*N+2)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
real BETA

* .. Local Scalars ..
real A, B, TOL
INTEGER I, IFAIL, J, K, NP

* .. Local Arrays ..
real U(N,2), V(N,2), W(LW), X(MNP), Y(N,MNP)
INTEGER IW(LIW)

* .. External Subroutines ..
EXTERNAL D02GAF, FCN, X04ABF

* .. Intrinsic Functions ..
INTRINSIC real

* .. Common blocks ..
COMMON BETA

* .. Executable Statements ..
WRITE (NOUT,*) ’D02GAF Example Program Results’
TOL = 1.0e-3
NP = 26
A = 0.0e0
B = 10.0e0
CALL X04ABF(1,NOUT)
BETA = 0.0e0
DO 40 I = 1, N

DO 20 J = 1, 2
U(I,J) = 0.0e0
V(I,J) = 0.0e0

20 CONTINUE

[NP3390/19/pdf] D02GAF.5

D02GAF D02 – Ordinary Differential Equations

40 CONTINUE
V(3,1) = 1.0e0
V(1,2) = 1.0e0
V(3,2) = 1.0e0
U(2,2) = 1.0e0
U(1,2) = B
X(1) = A
DO 60 I = 2, NP - 1

X(I) = (real(NP-I)*A+real(I-1)*B)/real(NP-1)
60 CONTINUE

X(NP) = B
DO 80 K = 1, 2

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Problem with BETA = ’, BETA

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

*
CALL D02GAF(U,V,N,A,B,TOL,FCN,MNP,X,Y,NP,W,LW,IW,LIW,IFAIL)

*
IF (IFAIL.EQ.0 .OR. IFAIL.EQ.3) THEN

WRITE (NOUT,*)
IF (IFAIL.EQ.3) WRITE (NOUT,99996) ’ IFAIL = ’, IFAIL
WRITE (NOUT,99998) ’Solution on final mesh of ’, NP,

+ ’ points’
WRITE (NOUT,*)

+ ’ X(I) Y1(I) Y2(I) Y3(I)’
WRITE (NOUT,99997) (X(I),(Y(J,I),J=1,N),I=1,NP)
BETA = BETA + 0.2e0

ELSE
STOP

END IF
80 CONTINUE

STOP
*
99999 FORMAT (1X,A,F7.2)
99998 FORMAT (1X,A,I2,A)
99997 FORMAT (1X,F11.3,3F13.4)
99996 FORMAT (1X,A,I3)

END
*

SUBROUTINE FCN(X,Y,F)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real F(N), Y(N)

* .. Scalars in Common ..
real BETA

* .. Common blocks ..
COMMON BETA

* .. Executable Statements ..
F(1) = Y(2)
F(2) = Y(3)
F(3) = -Y(1)*Y(3) - BETA*(1.0e0-Y(2)*Y(2))
RETURN
END

D02GAF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02GAF

9.2 Program Data

None.

9.3 Program Results

D02GAF Example Program Results

Problem with BETA = 0.00

Solution on final mesh of 26 points
X(I) Y1(I) Y2(I) Y3(I)
0.000 0.0000 0.0000 0.4695
0.400 0.0375 0.1876 0.4673
0.800 0.1497 0.3719 0.4511
1.200 0.3336 0.5450 0.4104
1.600 0.5828 0.6963 0.3424
2.000 0.8864 0.8163 0.2558
2.400 1.2309 0.9009 0.1678
2.800 1.6026 0.9529 0.0953
3.200 1.9900 0.9805 0.0464
3.600 2.3851 0.9930 0.0193
4.000 2.7834 0.9978 0.0069
4.400 3.1829 0.9994 0.0021
4.800 3.5828 0.9999 0.0006
5.200 3.9828 1.0000 0.0001
5.600 4.3828 1.0000 0.0000
6.000 4.7828 1.0000 0.0000
6.400 5.1828 1.0000 0.0000
6.800 5.5828 1.0000 0.0000
7.200 5.9828 1.0000 0.0000
7.600 6.3828 1.0000 0.0000
8.000 6.7828 1.0000 0.0000
8.400 7.1828 1.0000 0.0000
8.800 7.5828 1.0000 0.0000
9.200 7.9828 1.0000 0.0000
9.600 8.3828 1.0000 0.0000

10.000 8.7828 1.0000 0.0000

Problem with BETA = 0.20

Solution on final mesh of 26 points
X(I) Y1(I) Y2(I) Y3(I)
0.000 0.0000 0.0000 0.6865
0.400 0.0528 0.2584 0.6040
0.800 0.2020 0.4814 0.5091
1.200 0.4324 0.6636 0.4001
1.600 0.7268 0.8007 0.2860
2.000 1.0670 0.8939 0.1821
2.400 1.4368 0.9498 0.1017
2.800 1.8233 0.9791 0.0492
3.200 2.2180 0.9924 0.0206
3.600 2.6162 0.9976 0.0074
4.000 3.0157 0.9993 0.0023
4.400 3.4156 0.9998 0.0006
4.800 3.8155 1.0000 0.0001
5.200 4.2155 1.0000 0.0000
5.600 4.6155 1.0000 0.0000
6.000 5.0155 1.0000 0.0000

[NP3390/19/pdf] D02GAF.7

D02GAF D02 – Ordinary Differential Equations

6.400 5.4155 1.0000 0.0000
6.800 5.8155 1.0000 0.0000
7.200 6.2155 1.0000 0.0000
7.600 6.6155 1.0000 0.0000
8.000 7.0155 1.0000 0.0000
8.400 7.4155 1.0000 0.0000
8.800 7.8155 1.0000 0.0000
9.200 8.2155 1.0000 0.0000
9.600 8.6155 1.0000 0.0000

10.000 9.0155 1.0000 0.0000

D02GAF.8 (last) [NP3390/19/pdf]

